higher geometry / derived geometry
Ingredients
Concepts
geometric little (∞,1)-toposes
geometric big (∞,1)-toposes
Constructions
Examples
derived smooth geometry
Theorems
Formal geometry is a highly overloaded term in mathematics, used in number of conceptually similar ways, usually meaning that we work in setup in which some crucial details of geometry or analysis are not present or satisfied, e.g.
we work with functions on “manifolds” but the functions do not necessarily converge, the geometry is rather based on topological algebras of formal power series; this is the formal geometry of Grothendieck school and the main notion is that of a formal scheme (or more general ind-schemes). There are also noncommutative versions like Kapranov's noncommutative geometry.
Gelfand’s formal geometry: study infinite dimensional manifolds of jet bundles and related objects coming from usual differential geometry, geometry of formal differential operators, study of related objects from homological algebra, including Gelfand’s formal manifold (homological vector field)
we talk about neighborhoods,or localizations, morphisms of spaces, but not about spectra and points (a part of noncommutative geometry is done in such style) – this is sometimes called “pseudogeometry”
in algebraic geometry: formal spectrum of an adic noetherian ring
See MathOverflow: formal-geometry, how-do-i-describe-the-gl-n-torsor-attached-to-a-smooth-morphism-of-relative-dimen,
For characteristic case see
In a similar formal context Gelfand and collaborators introduced -systems
The -systems were partly motivated by the calculus of variations, formalizing further the setting of works of Gelfand and Dorfman.
See also
Examples of sequences of local structures
Last revised on July 28, 2016 at 16:02:42. See the history of this page for a list of all contributions to it.